The use of thermophilic bacterial models to obtain thermostable enzymes

Centro de Biología Molecular Severo Ochoa UAM-CSIC

Thermostable enzymes

- Easier transport and conservation
- Increased diffusion of substrates and products
- Longer operational half-lives
- Lesser contamination
- Lesser requirement for cooling
- Associated resistances to detergents and organic solvents

Getting thermostable enzymes

• Isolation of thermophiles with new activities

- Isolation of the genes encoding new enzymes from metagenomes of thermal environments
- Selection of thermostable variants from known enzymes of industrial interest (directed evolution)

But..

- Most thermophiles are difficult to grow under lab conditions.... >> very low success
- Only a fraction of the genes of a given thermophile can be expressed in an enzyme active form in mesophilic hosts like *E. coli.... >> low success*

But..

- Most thermophiles are difficult to grow under lab conditions.... >> very low success
- Only a fraction of the genes of a given thermophile can be expressed in an enzyme active form in mesophilic hosts like *E. coli.... >> low success*

- Laboratory-adapted thermophiles can be used instead
 - To detect and overexpressed thermozymes
 - To select for thermostable variants of non-thermostable enzymes

Current extreme thermophilic models as putative cell factories

Organism	Тор	Tran	Plas.	Virus	Antib.	Aux.	Rep.
					Resist.	Compl.	Gen.
Sulfolobus solfataricus	80	EP CJ	++	++	Hyg Adh	pyrEF	lacS
Sulfolobus acidocaldarius	80	CJ CaCl ₂	+	+	-	pyrEF	-
Pyrococcus furiosus	96	CaCl ₂	+	-	Adh	-	-
Pyrococcus abyssi	103	PEG	+	++	-	pyrEF	-
Thermococcus kodakarensis	85	CaCl ₂ NC	+	-	Sim	pyrF trp	lacS
Thermotoga neapolitana	80	PEG	+/-	-	-	-	-
> Thermus thermophilus	75	NC EP CJ	++	+++	Kan Bleo Hyg Str	leuB trpB pyrEF	bgaA phoA sGFP

Cistern Spring

Not sperings create different water temperature emissions for living things. Cheer hyperg/s horizon, compared provided the period of visible algor and barteria, car is requiring a different temperature reministeria. Only a baselful of hard mean species or of har tests in an line where spring water is tend, at, or above builting. As soare gradually coulds, by thesing energy from its soartergradually coulds. By thesing energy from its soarterit, creates hower temperature creations for there colorida spectra of algor and barteria. Remarkably, hardy communities of they, but water aligned cognitions can there is temperatures too hot for humans to travents.

Thermus spp

- Brock and Freeze in 1969
 T. aquaticus: Yellowstone
- Ubicuous
- Fast growth in complex media

Gram negative bacilli

Colony formation on agar plates

Caroten-rich (yellow-orange)

Cistern Spring

Bod sportings create different water temperature emissions for living things. Chier hypergy forces, emigrand grant colors impressed spectres of visible algor and barteria, each requiring a different temperature contension. Only a bardful of hard noise specter or of har tetra to an live where spring water is tend, at, or above building. As easier gradually could by thesing a seap from its sourcegradually could by thesing a seap from its sourcegradually could by thesing and barteria. Remarkably, hardy communities of the tetra is the searce and and the second barteria. Remarkably communities of the tetra

Thermus spp

- Brock and Freeze in 1969
 T. aquaticus: Yellowstone
- Ubicuous
- Fast growth in complex media

Gra
Natural competence
Complete genetic toolbox available

Colony formation on agar plates

Caroten-rich (yellow-orange)

APPLICATIONS OF *T. thermophilus* IN ENZYME PRODUCTION AND THERMO-SELECTION

> (Meta) genomic libraries

Protein cell factory

Up to 40% of the genes from a thermophile cannot be expressed in an active form in *E. coli*

Selection of thermostable protein variants

Functional screening for thermostable enzymes in (meta) genomic libraries

www.elsevier.de/svapm

Systematic and Applied Microbiology 32 (2009) 177-185

A two-host fosmid system for functional screening of (meta)genomic libraries from extreme thermophiles

Angel Angelov^{a,b}, Markus Mientus^b, Susanne Liebl^{a,b}, Wolfgang Liebl^{b,*}

^aInstitut f. Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Goettingen, Germany ^bLehrstuhl f. Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85354 Freising-Weihenstephan, Germany

- Fosmid libraries constructed in E. coli
- Transferred on 96 well to Tth
- Integration by homologous recombination on pyrE
- Many xylanolytic activitiers only detected in *T. thermophilus*

Spirochaeta thermophila DSM 6192 2009

Identification of novel esterase-active enzymes from hot environments by use of the host bacterium *Thermus thermophilus*

Benedikt Leis¹, Angel Angelov¹, Markus Mientus¹, Haijuan Li¹, Vu T. T. Pham¹, Benjamin Lauinger², Patrick Bongen², Jörg Pietruszka², Luis G. Gonçalves³, Helena Santos³ and Wolfgang Liebl^{1*}

- T. th strain with no esterases as host
- Greater number of esterase-positive
 clones (6) than with *E. coli* (2)
- Four novel esterases, two of new families

Metagenomic libraries 2015

Host to over-express thermostable enzymes that cannot be expressed in *E. coli*

Cell factories to over-express thermostable enzymes with greater yield than in in *E. coli*

Thermostabilization by directed evolution in thermophiles

• Functional:

- Strain growth dependent on the activity

• Activity independent:

- dependent on the functionality of a reporter

Examples of functional selection in *T. thermophilus*

Molecular Microbiology (1995) 16(5), 1031-1036

LeuB

Screening of stable proteins in an extreme thermophile, Thermus thermophilus

Masatada Tamakoshi, Akihiko Yamagishi and Tairo Oshima nucleotidyltransferase, glucose dehydrogenase, subtilisin and staphylocoocal nuclease (Matsumura and Alba,

The JOCHMAL OF BIOLOGICAL CHEMISTRY \otimes 2005 by The American Society for Biochemistry and Molecular Biology, Inc.

Vol. 280, No. 12, Issue of March 25, pp. 11422–11431, 2095 Printed in U.S.A

Bleo

Engineering a Selectable Marker for Hyperthermophiles*S

Beceived for publication, December 3, 2004, and in revised form, December 27, 2004 Published, JBC Papers in Press, January 7, 2005, DOI 10.1074/jbc.M413623200

JOURNAL OF BROKELINCE AND BROENGINFERING Vol. 100, No. 2, 158–163, 2005 DOI: 10.1263/jbb.100.158 © 2005, The Society for Biotechnology, Japan

ACCELERATED PUBLICATION

Hygro

In vivo Directed Evolution for Thermostabilization of Escherichia coli Hygromycin B Phosphotransferase and the Use of the Gene as a Selection Marker in the Host-Vector System of Thermus thermophilus

Akira Nakamura,1* Yasuaki Takakura,1 Hideo Kobayashi,1 and Takayuki Hoshino1

In vivo thermoselection (THR)

- Constitutive PslpA
 promoter
- Linker
- Thermostable selection marker: kat
- Host: Thermus thermophilus (50-82 °C, Topt 72 °C)
- Activity INDEPENDENT

Chautard y cols. (2007) Nat. Methods 4: 919-921

Example of selection at 70°C

Folding interference primary selection

Kan (ug/ml)
0
20
40

Cheap high-throughput screening

Secondary selection for activity on thermostable clones

low throughput screening

Chautard et al 2007

P. fluorescens Esterase I

65 °C- Kn 60 mg/L

Rivera 2012. Ph.D. Thesis

Fluorescent proteins as thermostability reporters in *T. thermophilus*

70ºC

In vitro screening through folding interference with fluorescent reporters

Conclussions

- Natural thermostable enzymes can be isolated from thermal environments
- Thermus thermophilus is more efficient for the detection and expression of thermozymes than conventional mesophilic hosts
- The use of folding interference vectors allow the thermostabilization of proteins in an activity independent way, reducing time and costs

BERENGUER'S LAB

CBMSO> Microbiology & Virology> Biotechnology & Genetics of extreme thermophilic bacteria

BASIC RESEARCH

- Anaerobic metabolism
- HGT
- Defense systems

APPLIED RESEARCH

- Enzyme thermostabilization
- IVT
- C-C bond enzymatic synthesis
- Metagenomics

Thermostabilization of proteins without enzymatic activity: Human interferons

PFEI: Folding calibration set

Variant	T _m (°C)
PFEI-34	78.8
PFEI-16	74.6
PFEI-wt	74.5
PFEI-46	74.4
PFEI-41	69.6
PFEI-60	67.9
PFEI-80	67
PFEI-45	61
PFEI-29	56
PFEI-12	49

+02

 $-H_2O_2$

Melting 65 °C post-IVTTEco in bulk

Folding interference is also selectable after IVTT with *E. coli* PURE-systems